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Asymptotical behavior of canonical mappings near the separatrix of Hamiltonian systems subjected to
time-periodic perturbations is studied. Based on general forms of these mappings �S. S. Abdullaev, Phys. Rev.
E 70, 046202 �2004�� it is shown that the Melnikov-type integrals determining their generating functions can
be presented as a sum of regular, R�reg��h�, and oscillatory, R�osc��h�, parts. General asymptotical formulas for
R�osc��h� are derived. The oscillatory parts have zeros at primary resonant values of energy. Conditions are
found at which the oscillatory parts, R�osc��h�, can be neglected in the generating functions thus allowing us to
obtain simplified mappings depending only the regular parts R�reg��h�. Since the latter are smooth functions of
energy h this allows us also to justify the widely used conventional separatrix mapping determined by R�reg�

��h� at the separatrix h=0. A theory is illustrated for a specific example of a Hamiltonian system, a particle
dynamics in periodically perturbed double-well potential.
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I. INTRODUCTION

Separatrix mapping is a powerful tool to study generic
features of Hamiltonian systems near the separatrix, particu-
larly, the onset of chaotic motion and the formation of the
stochastic layer �1–4�. It is a map of energy and time vari-
ables to certain sections of the phase space of the system.
The conventional method to derive separatrix mappings is
based on the calculations of the increments of time and en-
ergy variables over phase rotation in phase space �see, for
instance, Ref. �2��. Particularly, the calculation of energy in-
crement is reduced to the Melnikov integral, i.e., to the inte-
gral from the perturbation functions taken along the unper-
turbed separatrix �5�.

The separatrix mapping has been successfully used in
various problems of physics and dynamical astronomy to
study a chaotic transport of passive particles in structured
fluids, magnetic field lines in magnetically confined plasmas,
etc. �see Ref. �6� for references�. In spite of such numerous
applications of the separatrix mapping no rigorous derivation
of this mapping has been given, nor has its justification been
discussed in the literature. In the previous paper �6� a first
step toward mathematically rigorous construction of map-
pings near the separatrix of Hamiltonian systems has been
made. Based on the method of canonical transformation of
variables to construct mappings in Hamiltonian systems pro-
posed in Ref. �7�, the general procedures to construct canoni-
cal mappings near the separatrix have been proposed and
their different forms are obtained.

The present work is devoted to study the asymptotical
forms of the mappings obtained in Ref. �6� and justification
of the separatrix mapping. First we obtain general asymptoti-
cal formulas for the Melnikov-type integrals, R�h� near the
separatrix which determine the generating functions of map-
pings. They can be presented as a sum of two parts: a regular
part, R�reg��h�, and an oscillatory part, R�osc��h�. It is shown
that the regular part, R�reg��h�, is a smooth function of energy
h, and it is related to the Fourier components, Hmn�h�, of the

perturbation Hamiltonian taken at the resonant values of en-
ergy, hmn, determined by the primary resonance conditions,
m��hmn�=�, where m��h� is a frequency of unperturbed
motion, � is a perturbation frequency, and m is an integer
number. The oscillatory part, R�osc��h�, is a fast-oscillating
function of h with zeros at the primary resonant values, hmn.
Since the primary resonances mostly affect the system the
oscillatory integrals, R�osc��h�, in the generating functions can
be neglected at low and moderately high perturbation fre-
quencies �. This approximation, called primary resonant ap-
proximation, allows us to simplify the mapping, and more-
over, to justify the validity of the separatrix mapping near the
separatrix where R�reg��h� can be replaced by the Melnikov
integral R�reg��0� taken along the unperturbed separatrix.

The paper is organized as follows. In Sec. II we recall the
general forms of canonical mappings obtained in Ref. �6�.
The structure of the Melnikov-type integrals and their prop-
erties are studied in Sec. III. Particularly, the derivation of
asymptotical formulas for the Melnikov-type integrals are
given in the Appendix. Simplification of mappings near the
separatrix and the justification of the separatrix mapping are
discussed in Sec. IV. The application of the mapping to the
specific Hamiltonian system, namely, to study the dynamics
of a particle in a periodically driven double-well potential is
given in Sec. V. The obtained results are summarized in the
conclusive Sec. VI.

II. CANONICAL MAPPINGS NEAR SEPARATRIX

Consider a generic one-degree-of-freedom Hamiltonian
system subjected to time-periodic perturbation governed by
Hamilton equations

dx

dt
=

�H

�p
,

dp

dt
= −

�H

�x
, �1�

where �x , p� are the canonical coordinate and momentum.
The Hamiltonian H�x , p , t� can be presented in the form
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H�x,p,t� = H0�x,p� + �H1�x,p,t� , �2�

where H0�x , p� is the unperturbed Hamiltonian, H1�x , p , t� is
the time-dependent perturbation, � stands for the small per-
turbation parameter. Further we consider the multifrequency
perturbation with frequencies �n and write the perturbation
Hamiltonian H1�x , p , t� as a Fourier series:

H1�x,p,t� = �
n

Hn�x,p�cos��nt + �n� , �3�

where �n are the phases of perturbation.
Suppose that the unperturbed system given by Hamil-

tonian H0�x , p� has one or more saddle points �xs , ps�
�s=1,2,…� at the same energetic level E, i.e., E=H0�xs , ps�.
These saddle points are connected by phase curves known as
separatrices. These curves separate regions of phase space
with the different types of motion. Let �xs , ps� and �xs+1 , ps+1�
be two consecutive saddle points with a heteroclinic connec-
tion as shown in Fig. 1. If the system has only one saddle
point then the points �xs , ps� and �xs+1 , ps+1� coincide and a
saddle-saddle connection is a homoclinic orbit. We put H
=Hs=0 on the separatrix. In Fig. 1 two cross sections �c and
�s are introduced as follows: the section �c consists of a
segment perpendicular to the separatrix at the midpoint be-
tween saddle points, and the section �s is located near saddle
points �xs , ps� and consists of two segments perpendicular to
each other with the crossing point at �xs , ps�. The unperturbed
orbits perpendicularly cross these sections.

Let tk and hk be a time instant and an energy of the system
when the orbit crosses the section �s, where the index k
stands for the iteration number �see Fig. 1�. The map along
the single saddle-saddle connection,

�tk+1,hk+1� = M̂s+1,s�tk,hk� , �4�

relates the crossing point �tk ,hk� at the section �s with the
next point �tk+1 ,hk+1� at �s+1, as shown schematically in Fig.
1.

The general form of the mapping �4� is obtained in Ref.
�6� and in the first order of perturbation parameter � it has the
following symplectic form:

Hk = hk + �
�S�k��tk,Hk�

�tk
,

Tk = tk − �
�S�k��tk,Hk�

�Hk
,

T̄k = Tk +
2�

��Hk�
,

hk+1 = Hk − �
�S�k+1��tk+1,Hk�

�tk+1
,

tk+1 = T̄k + �
�S�k+1��tk+1,Hk�

�Hk
, �5�

determined by the generating functions

S�k��tk,H� = �
n

�Kn
−�H�cos �n

+�tk,H� − Ln
−�H�sin �n

+�tk,H�� ,

S�k+1��tk+1,H� = − �
n

�Kn
+�H�cos �n

−�tk+1,H�

− Ln
+�H�sin �n

−�tk+1,H�� . �6�

Here

�n
±�t,H� = �n�t ±

�

��H�� + �n. �7�

In Eq. �5� ��H� is the frequency of motion, determined by
the time interval T�H� spent for the phase space point to
move from the section �s to the �s+1 along the unperturbed
orbit, i.e., ��H�=2� /T�H�.

The quantities Kn
±�H� , Ln

±�H� are real and imaginary parts
of the integral Rn

±�H�=Kn
±�H�+ iLn

±�H�, respectively, taken
along the unperturbed orbit x�h , t� , p�h , t�:

Rn
−�H� = �

−�/��H�

	0−tk−�/��H�

Vn�H,	�ei�n	d	 ,

Rn
+�H� = − �

�/��H�

	0−tk+1+�/��H�

Vn�H,	�ei�n	d	 , �8�

where Vn�h , t�	Hn(x�h , t� , p�h , t�). We specify the time t in
the following way: at t=0 the orbit crosses the section �c,
and at t= 
 ts= 
� /��h� it crosses the sections �s and �s+1,
respectively. The free timelike parameter 	0 lies in the inter-
val �tk , tk+1�.

If the system has Nsep independent saddle-saddle connec-
tions, then there exist Nsep independent mappings �4� which
completely determine the dynamics of a Hamiltonian system.

The sequence of mappings M̂s+1,s depends on the topology of
saddle-saddle connections in phase space and the trajectory
of motion.

The mapping �5� is called symmetric map when the free
parameter 	0 is taken exactly in the middle between tk and
tk+1, i.e., 	0= �tk+1+ tk� /2= tk+� /��H�. Then the integrals �8�
take the forms

Rn
±�H� = 
 �


�/��H�

0

Vn�H,	�ei�n	d	 . �9�

FIG. 1. Schematic view of the mapping. Solid curve describes
the perturbed orbit, and dotted curves are the unperturbed orbits
near the separatrix.
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The two types of nonsymmetric mappings can be obtained by
setting the free time parameter 	0 equal to 	k+1 or 	k. In the
first case the mapping �5� is reduced to

hk+1 = hk + �
�S�tk,hk+1�

�tk
,

tk+1 = tk +
2�

��hk+1�
− �

�S�tk,hk+1�
�hk+1

, �10�

determined by only one generating function S�tk ,hk+1�:

S�tk,hk+1� = �
n

�Kn�hk+1�cos �n
+�tk,hk+1�

− Ln�hk+1�sin �n
+�tk,hk+1�� , �11�

where K�h� and L�h� are the integrals

Kn�h� + iLn�h� = �
−�/��h�

�/��h�

Vn�h,	�ei�n	d	 . �12�

In the second case 	0=	k one obtains

hk+1 = hk − �
�S�tk+1,hk�

�tk+1
,

tk+1 = tk +
2�

��hk�
+ �

�S�tk+1,hk�
�hk

, �13�

where S�k+1��tk+1 ,hk� is given by

S�tk+1,hk� = − �
n

�Kn�hk�cos �n
−�tk+1,hk�

− Ln�hk�sin �n
−�tk+1,hk�� . �14�

In a particular case h=0 the integrals �12� coincide with
the Melnikov integral in the conventional separatrix mapping
�see Refs. �2,4��. Indeed, at the limit h→0 the frequency
��h�→0 and the integrals �9� are reduced to

Kn�0� + iLn�0� = �
−�

�

Vn�0,	�ei�n	d	 . �15�

III. STRUCTURE OF MELNIKOV-TYPE INTEGRALS
Rn„h…

In this section we describe some properties of the
Melnikov-type integrals Kn�h� and Ln�h� defined by Eqs. �9�
and �12�. First of all consider the relation between coeffi-
cients Hmn�h� of the perturbation in a Fourier series in
action-angle variable �I ,��, i.e.,

H1�h,�,t� = �
n

Hn�h,��cos��nt + �n� ,

Hn�h,�� = Re�
m

Hmn�h�eim�,

Hmn
* �h� = H−m,n�h�, Hmn�h� 	 Hmn„I�h�… , �16�

and the integrals Rn�h�=Kn�h�+ iLn�h�. According to Eq. �12�
one obtains

Rn�h� = �
−�/��h�

�/��h�

Hn�h,��ei�n	d	

= Re�
m

Hmn�h��
−�/��h�

�/��h�

ei�m�+�n�	d	

=
2�

��h��m
sin
��m − �n/��h���

��m − �n/��h��
Hmn

* �h� . �17�

As seen from Eq. �17� at the values h=hmn of primary reso-
nances, i.e., m��hmn�=�n, the integral Rn�h� is determined
by Fourier coefficients Hmn

* �h�, i.e.,

Rn�hmn� =
2�

��h�
Hmn

* �hmn� =
2�m

�n
Hmn

* �hmn� . �18�

The analytical calculation of the integrals Rn�h� is not
straightforward. The asymptotical method to estimate these
integrals is presented in the Appendix. It is shown that the
integral Rn�h� can be presented as a sum of regular and os-
cillatory parts,

Rn�h� = Rn
�reg��h� + Rn

�osc��h� . �19�

The regular part, R�reg��h�, is a smooth and slowly varying
function of the relative energy h. We construct this function
by extending the function Rn�hmn� �Eq. �18�� defined at dis-
crete resonant values of hmn �or m� to continuous values of h
by replacing the discrete mode number m by the continuous
one m=�n /��h�, i.e.,

Rn
�reg��h� =

2�

��h�
H�n/��h�,n

* �h� . �20�

At the limit �h�→0 it tends to the value R�0�, i.e., to the
Melnikov integrals �15�. Analytical and numerical calcula-
tions of R�reg��h� for typical Hamiltonian systems presented
in Sec. V show that R�reg��h� is sufficiently close to R�0� at a
certain small region near the separatrix h=0, i.e., R�reg��h�
R�0�.

The oscillatory part, R�osc��h�, is a fast-oscillating function
of h with a vanishing amplitude at the limit �h�→0:
R�osc��h�→0. The asymptotical formulas for R�osc��h� at small
values of h are given in the Appendix. For Hamiltonian sys-
tems with hyperbolic saddle points they have generic fea-
tures near the separatrix. It was shown that for the perturba-
tion Hamiltonian, H1�x , p , t�, with the nonvanishing first
derivative at the saddle point, �xs , ps�, i.e., �H1�x , p , t� /�x
�0 �or �H1�x , p , t� /�p�0�, the leading term of R�osc��h� has
the following asymptotics:

R�osc��h� � ��h��sin���n

��h�
� , for h  0,

cos���n

��h�
� , for h � 0.� �21�

Since ��h�→0 when �h�→0 the frequency of oscillations of
R�osc��h� in h increases with approaching the separatrix. Ac-
cording to the definitions of R�reg��h� and R�osc��h� given by
Eqs. �19� and �20� and the property �18� the function
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R�osc��h� has zeros at the primary resonance values of h
=hmn when m��hmn�=�n.

Moreover, the integrals R�osc��h� have a rescaling invari-
ance property near the separatrix,

R�osc���2h� = �R�osc��h� , �22�

where �=exp�2�� /�n� is the universal rescaling parameter
�see, e.g., Ref. �8��. This property follows from the universal
logarithmic asymptotics, ��h��2�� / ln�h�, of the frequency
of motion ��h� near the separatrix of Hamiltonian systems
with hyperbolic saddle points. Here � is a growth increment
of orbits.

Complete asymptotical formulas for the integrals
R�osc��h� for generic Hamiltonian systems are derived in the
Appendix. We shall also study the properties of these inte-
grals in Sec. V for a specific Hamiltonian system.

We conclude this section with a note that the relation �18�
between the Fourier coefficients, Hmn�h�, of the perturbation
Hamiltonian H1�h ,� , t� and the regular part, Rn

�reg��h�, of the
Melnikov-type integral allows one to rewrite the well-known
formula for the width of resonances, Wmn, through a single
function R�reg��h�, i.e.,

Wmn = 4� �Hmn�hmn�
�I�hmn�

�1/2

= 4� �Rn�hmn�
2��h�hmn�

�1/2

, �23�

where �I�h�	d� /dI , �h�h�	d� /dh.

IV. SIMPLIFICATION OF MAPPINGS

The symmetric mapping �5� with the generating functions
�6�, as well as the nonsymmetric mappings �10� and �13�
determined by generating functions �11� and �14�, respec-
tively, have a rather complicated structure due to presence of
oscillatory parts of integrals Rn�h� in the generating func-
tions S�h , t�. This may cause some difficulties in numerical
solutions of implicit equations in the mappings, especially
when h approaches 0. For this reason it is desirable to sim-
plify mappings. Below we consider such an approximation
which would not only simplify mappings, but also justify the
separatrix mappings.

A. “Primary resonant” approximation

As has been noted above, the oscillatory parts of the in-
tegrals Rn�h� have zeros at primary resonant values of h
=hmn, where Rn�hmn� is proportional to Fourier coefficients
Hmn of the perturbation Hamiltonian H1�I ,� , t� �see Eq.
�18��. The primary resonant perturbation, Hmncos�m�−�nt�,
significantly affects the system near the resonant values of
hmn�m��hmn�=�n�, while the effect of other nonresonant
terms is negligible. Then near the resonant values of hmn the
oscillatory part Rn

�osc��h� is significantly smaller than the
regular part Rn

�reg��h�:

�Rn
�osc��h�� � �Rn

�reg��h��, for h  hmn. �24�

Then one can neglect the oscillatory parts, Rn
�osc��h�, in the

generating functions, S�h , t�, replacing the integrals Rn�h� by

their regular parts Rn
�reg��h�. Furthermore, we shall call this

approximation a “primary resonant” approximation.

B. Simplified form of mappings

Further simplification of the mappings can be done using
the smallness of perturbation parameter �. Eliminating the
intermediate variables, H , T, we transform a set of Eq. �5�
into

hk+1 = hk − �� �Sk+1

�tk+1
−

�Sk

�tk
� ,

tk+1 = tk +
2�

��Hk�
+ �� �Sk+1

�Hk
−

�Sk

�Hk
� . �25�

Using Eqs. �5� and �6�, one can show that

2�

��Hk�
+ �� �Sk+1

�Hk
−

�Sk

�Hk
� =

�

��hk�
+

�

��hk+1�
+ G�tk,hk+1,hk�

+ O��2� ,

�� �Sk+1

�tk+1
−

�Sk

�tk
� = �F�tk,hk+1,hk� + O��2� ,

where

F�tk,hk+1,hk� = �
n

�n�Kn
�reg��hk+1�sin �n

+�tk,hk� + Ln
�reg�

��hk�cos �n
+�tk,hk�� ,

G�tk,hk+1,hk� = − �
n
�dKn

�reg��hk+1�
dhk+1

cos �n
+�tk,hk�

−
dLn

�reg��hk+1�
dhk+1

sin �n
+�tk,hk�� , �26�

with the coefficients Kn
�reg��h� , Ln

�reg��h� are regular parts of
the integrals �12�. Then neglecting the terms of order �2 we
obtain

hk+1 = hk − �F�tk,hk+1,hk� ,

tk+1 = tk +
�

��hk�
+

�

��hk+1�
+ �G�tk,hk+1,hk� . �27�

It is easy to check that the mapping �27� is area-preserving,
i.e., det���hk+1 , tk+1� /��hk , tk��=1, and invariant with respect
to the time reversing transformation, k↔k+1.

C. Separatrix mapping approximation

For typical Hamiltonian systems the regular part,
Rn

�reg��h�, is a smooth function of h and its deviation from
Rn

�reg��0� is small. Then the integrals �9� in the generating
functions �6� can be replaced by the Melnikov-type integrals
�15�, i.e., Kn�h�=Kn�0� , Ln�h�=Ln�0�. Then the mapping
�27� can be further simplified to
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hk+1 = hk − ��
n

�n � �Kn�0�sin��n�tk +
�

��hk�
� + �n�

+ Ln�0�cos��n�tk +
�

��hk�
� + �n�� ,

tk+1 = tk +
�

��hk�
+

�

��hk+1�
, �28�

where Kn�0� and Ln�0� are the integrals defined by Eq. �15�.
The mapping of type �28� was obtained in Refs. �9,10� from
the conventional separatrix mapping by shifting the time tk
from section �c to section �s.

Since both variables �t ,h� in the mappings �27� and �28�
are defined in the neighborhood of the saddle points, they
become important to study the dynamics and statistical prop-
erties of chaotic motion in a system. This is because of the
fact that trajectories spend most of time near the saddle
point, and therefore the whole dynamics is mainly deter-
mined by the phase space structure of the system in the
neighborhood of saddle points.

D. On the validity of the primary resonant approximation

In this approximation one neglects the oscillatory parts
Rn

�osc��h� of the integrals Rn�h� retaining only the smooth
regular parts Rn

�reg��h�. This procedure is equivalent to taking
into account the effect of only primary resonances of type
m��hmn�=�n, near which the oscillatory functions Rn

�osc��h�
are negligibly small in comparison with Rn

�reg��h� �see Eq.
�24��. This condition is satisfied for the low and moderately
high frequencies of perturbation �n, when Rn

�reg��h�, particu-
larly, Rn

�reg��0�, is not negligibly small.
However, for the large perturbation frequencies, �n, the

condition �24� may be violated. At the large �n the integrals
Rn

�reg��h�, as well as Rn
�reg��0�, are exponentially small in the

large interval of h near the separatrix. Then the effect of the
primary resonances, m��h�=�n, on the system becomes
negligibly small. In this case the nonprimary resonances of
type m��hmn�=s�n�s�1�, at which �Rn

�osc��hmn��� �Rn
�reg��h��,

may affect the system although the corresponding perturba-
tion terms Hmn�I� in the Fourier expansion of H1�I ,� , t� are
exponentially small.

However, the detailed study of the validity of the “pri-
mary resonant approximation” requires a separate investiga-
tion which, probably, should take into account the higher
order terms of the generating function S�t ,h� in a perturba-
tive series of powers of perturbation parameter �.

V. MOTION IN A PERTURBED DOUBLE-WELL
POTENTIAL

We illustrate the method presented above on the example
of a motion of particle in a double-well potential in the pres-
ence of external time-periodic perturbation. The system is
governed by the Hamiltonian

H = H0�x,p� + �H1�x,p,t� ,

H0�x,p� =
p2

2
−

x2

2
+

x4

4
,

H1�x,p,t� = �x cos��t + �� , �29�

where � stands for the small perturbation amplitude. Figure 2
shows the potential function U�x�=−x2 /2+x4 /4 �a�, and the
phase space of unperturbed motion ��	0� �b�. It has two
elliptic fixed points at �x= ±1, p=0� and one hyperbolic fixed
point at �x=0, p=0�. A particle is trapped in one of potential
wells �curves 1� at −1/4H0 �curves 1 in Fig. 2�b��, and
it is untrapped at H�0 �curve 3�. At the separatrix H=0
�curve 2�. The unperturbed trajectory x�t� , p�t� for the
trapped motion �H0� is given by

x�t� = ± a dn�u;k� ,

p�t� = 

a2k2

�2
sn�u;k�cn�u;k� ,

u = at/�2, a = �1 + �1 + 4H , �30�

where sn�u ;k� , cn�u ;k� , dn�u ;k� are the Jacobi elliptic func-
tions with a module k,

k =
�2�1 + 4H�1/4

�1 + �1 + 4H�1/2
.

The unperturbed frequency, ��H�=dH0�I� /dI, of this
motion is

FIG. 2. �a� Double-well potential potential U�x�=−x2 /2+x4 /4.
�b� Phase space of motion.
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��H� =
�a

�2K�k�
. �31�

Particle orbits outside the potential wells �H�0� are de-
scribed by

x��� = ± a cn�u;1/k� ,

p��� = 
 a�1 + 4H�1/4sn�u;1/k��1 − k−2sn2�u;1/k� ,

u = akt/�2, �32�

and the frequency is given by

��H� =
�ka

�2K�k−1�
. �33�

Near the separatrix �H→0� the frequency, ��h�, goes to
zero according to the following asymptotics:

��H� =
1

ln
16

�H�

+ O�H�, �H� → 0. �34�

Using Eqs. �30� and �32� the perturbation Hamiltonian
H1�x , p , t� in Eq. �29� can be expanded in Fourier series in
the angle variable �:

H1�I,�,t� = �
s=−1,1

�
m=1

�

Hm�H�

� �cos�m� − s�t� , for H  0,

cos��m − 1/2�� − s�t� , for H � 0,
�
�35�

where

Hm�H� = ± a � �
�

K�k�
q−

m

1 + q−
2m , for H  0

�

K�k−1�
q+

m−1/2

1 + q+
2m−1 , for H � 0,�

q− = exp�− �K��1 − k2�/K�k�� ,

q+ = exp�− �K��1 − k−2�/K�k−1�� . �36�

From Eq. �35� follows that the primary resonance condi-
tions are m��H�=� �m=0, 1, 2,…� for the trapped motion
�H0�. For the untrapped motion �H�0� the corresponding
conditions are �2m−1���H�=2�.

The geometrical scheme of the mapping is given in Fig. 3.
The section �s located near the saddle point �xs= ps=0� con-
sists of two perpendicular segments of the x and p axes with
the center at �xs=0, ps=0�. The section �c consists of the
segment of the x axis located near the farthest crossing points
of the unperturbed separatrix with the x axis. Two saddle-
saddle connections are located in the right �x�0� and left
�x0� halves of phase space �x , p�, respectively.

According to Eq. �29� the perturbation function Vn�H ,	�
=x�	�, and using Eqs. �30� and �32� for x�	� the integral K�h�
�Eq. �12�� is reduced to

K�h� = �
−�/��h�

�/��h�

x�±��	�cos��	�d	 = ±
a�

��h��−1

1

� �dn„K�k�	;k…cos���	/��d	 , for h  0,

cn„K�1/k�	;1/k…cos���	/��d	 , for h � 0.
�

�37�

The signs �±� stand for the right �x�0� and left �x0�
halves of phase space, respectively. At the separatrix h=0 we
have

K�0� = �
−�

�

xs
�±��t�cos��	�d	 = ± �2�

−�

� cos��	�d	

cosh 	

=
±�2�

cosh���/2�
. �38�

Since x�t�=x�−t� one can show that L�h�	0.
As was shown in Sec. III the integral K�h� consists of

regular and oscillatory parts: K�h�=K�reg��h�+K�osc��h�. Ac-
cording to Eq. �20� the regular part can be expressed through
the Fourier components Hm�H� �Eq. �36�� of the perturbation
Hamiltonian. Using Eqs. �31� and �33� we have

K�reg��h� =
2�

��h�
H�/��h��h� = ±

��2

cosh��2�K��1 − k2�/a�
�39�

for the case h0, and

K�reg��h� =
2�

��h�
H�/��h�+1/2�h�

= ±
��2

k cosh��2�K��1 − k−2�/ka�
�40�

for the case h�0. In the limit �h�→0 the both expressions of
K�reg��h� coincide with K�0� �Eq. �38�� obtained by the direct
integration.

FIG. 3. Geometry of the separatrix map. The solid curve de-
scribes the perturbed orbit, and the dotted curve is the unperturbed
separatrix.
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The asymptotical formula for K�osc��h� can be found using
the general asymptotical formulas for the Melnikov-type in-
tegrals, R�osc��h�, near the separatrix obtained in the Appen-
dix. Our problem corresponds to cases �ii� and �iii� consid-
ered in the Appendix, Sec. 5, and the expression for K�osc�

��h� is given by Eq. �A31�. For the Hamiltonian system �29�
we have the following parameters: �=�=1, a�=1, a�=b��

=b��=b��=0. Therefore one obtains

K�osc��h� = 

2�2�h�
�2 + 1

� �� sin���/��h�� , for h  0,

− cos���/��h�� , for h � 0,
�

�41�

where the upper sign �−� corresponds to the right side of the
phase space �x�0�, and the lower sign �+� - to the left side
of the phase space �x0�.

Figure 4 shows the dependence of the integral K�h� on h
obtained by the direct numerical integration of Eq. �37�, as
well as by the analytical formulas �39�–�41�: solid curve 1
corresponds to the numerical calculations, dashed curve 2
corresponds to the analytical result, and dotted curve 3 cor-
responds to the regular part K�reg��h� given by Eqs. �39� and
�40�. The perturbation frequency is taken equal to �
=4.532 36. The corresponding rescaling parameter �
=exp�2�� /�� is equal to 4.

As seen from Figs. 4�a�–4�c�, analytical formulas �39� and
�40�, the regular part K�reg��h� and the asymptotical formula
�41� for the oscillatory part, K�osc��h�, well describe the be-
havior of the integral K�h�. The accuracy of approximation
increases with approaching the separatrix. On the other hand,
the numerical calculations confirm also the following rescal-
ing property:

K�osc���2h� = �K�osc��h� �42�

of the oscillatory part of the integral K�h� following from the
asymptotical formula �41�.

One can easily see that zeros of K�osc��h� coincide with the
primary resonant values of hmn :m��h�=� �m=0, 1, 2,…� at
h0, and �2m−1���h�=2� for h�0. Therefore according
to the primary resonant approximation �see Sec. IV A� in the
mapping one can neglect oscillatory parts K�osc��h� retaining
only smooth regular parts K�reg��h�.

The dynamics of the system is described by two map-

pings, �tk+1 ,hk+1�=M̂�±��tk ,hk�, Eq. �27�, corresponding to the
two different saddle-saddle connections:

hk+1 = hk 
 ��K�reg��hk+1�sin��k +
��

��hk�
+ �� ,

�k+1 = �k +
��

��hk+1�
+

��

��hk�

 ��

dK�reg��hk+1�
dhk+1

�cos��k +
��

��hk�
+ �� , �43�

where the phase variable �=�t is introduced. The map with
the �+� sign describes the right side of phase space �x�0�,
while one with the �−� sign corresponds to �x0�.

FIG. 4. Dependence of the integral K�h� on the relative energy
h: solid curve 1 describes K�h� obtained by the numerical integra-
tion of the integral �37�, and dashed curve 2 describes K�h� ob-
tained by the analytical formulas �39�–�41�, and dotted curve 3
corresponds to the regular part K�reg��h� given by Eqs. �39� and
�40�. �a� In the interval −0.25h0.16: �b� expanded view of K�h�
in the rectangular box region shown in �a�; �c� expanded view of the
rectangular box region shown in �b�. The perturbation frequency
�=4.532 36, and the rescaling parameter �=exp�2�� /��=4.
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Further simplification of the mapping can be done near
the small neighborhood of the separatrix. Using the asymp-
totics of the frequency ��h� �Eq. �34�� �h�→0 and replacing
K�reg��h� by K�0� we obtain

hk+1 = hk 
 ��K�0�sin��k +
�

2
ln

16

�hk�
+ �� ,

�k+1 = �k +
�

2
�ln

16

�hk�
+ ln

16

�hk+1�� . �44�

The dynamics of system near the separatrix is described

by the sequence of iterations of the maps M̂�±�. This sequence
is determined by a certain rule given in Ref. �6�.

The mappings �43� and �44� are valid for small values of
perturbation, ��1. Note that the second mapping �44� is
applicable only to the area close to the separatrix, while the
first mapping �43� can be applied also far from the separatrix.

The mapping �43� is applied to obtain Poincaré sections
of system in the �� ,h� plane of the first �h�0� and fourth
branches �h0� of the section �s �see Fig. 3�. It has been
also compared with the small step numerical integration of
the Hamiltonian system �29� using the symplectic integrator
proposed in Ref. �11�. The mapping result is shown in Fig.
5�a�, and the results obtained from the numerical integration
is presented Fig. 5�b�. Calculations in both cases were per-
formed with a set of identical initial coordinates. As seen
from Fig. 5 the mapping well reproduces the structure of
phase space. For the time step of integration, �t, of the equa-
tion, equal to 4��10−3 /�, the mapping runs two order
faster than the small-step symplectic integrator.

VI. CONCLUSION

In summary, we have studied the asymptotical behavior of
canonical mappings near the separatrix of generic Hamil-
tonian systems with one degree of freedom in the presence
time-periodic perturbations. The canonical mappings of these
systems are determined by the Melnikov-type integrals. It is
shown that these integrals have a generic asymptotic behav-
ior near the separatrix. They can be presented as a sum of
two parts: the regular part, which is a smooth function of the
relative energy, and the oscillatory part. The latter is an os-
cillatory function of energy with zeros at the primary reso-
nant values of energy. This property allows one to neglect the
oscillatory parts of the Melnikov integrals in the mappings
for the low and medium frequencies of perturbations when
the regular part of integrals are not negligibly small. This
approximation, called primary resonant approximation, sim-
plifies the mapping. In the regions near the separatrix the
smooth regular part of the Melnikov integral can be approxi-
mated by its value at the separatrix which thus reduces the
mapping to the separatrix mapping. We have illustrated this
theory on the example of particles dynamics in a periodically
driven double-well potential. The simplified mapping as well
as the separatrix mapping well reproduce the results obtained
using the small-step symplectic integration of the equations
of motion.

The canonical mappings near the separatrix obtained in
this work are not directly applicable to the many-degrees-of-

freedom Hamiltonian systems. However, the method of ca-
nonical transformation of variables to construct mappings
near the separatrix given in the previous �see Ref. �6�� and
the present works can be generalized to such Hamiltonian
systems.

ACKNOWLEDGMENTS

This work has been partially supported by Project No.
SFB 591 of Deutsche Forschungsgemeinschaft �DFG�.

APPENDIX: ASYMPTOTIC ESTIMATIONS OF THE
INTEGRAL Rn„h… NEAR SEPARATRIX

1. General structure of integrals

For simplicity we shall omit the subscripts n in Rn�h�.
Consider three types of the Melnikov-type integrals defined
by Eqs. �9� and �12�. We study the asymptotics of R�h�,
R+�h�, and R−�h� near the separatrix, i.e., �h��1. They can be
presented as a sum of regular, R�reg��h�, and oscillatory,
R�osc��h�, parts,

R�h� = R�reg��h� + R�osc��h� ,

R±�h� = R�reg�±�h� + R�osc�±�h� , �A1�

where the regular parts

FIG. 5. Poincaré sections to the first and fourth branches of the
section �s: �a� obtained by the mapping �43�; �b� by the direct
integration of the Hamiltonian system �29�. Initial coordinates in
both cases are identical. The perturbation frequency � is the same
as in Fig. 4, and the perturbation amplitude �=10−3.
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R�reg��h� = R�reg�+�h� + R�reg�−�h� ,

R�reg�±�h� = F�h, ± 0� , �A2�

and the oscillatory parts

R�osc��h� = R�ocs�+�h� + R�ocs�−�h� ,

R�ocs�±�h� = ± F„h, ± �/��h�… , �A3�

are defined through the function F�h ,	�,

F�h,	� =� V�h,	�ei�	d	 . �A4�

Similar relations can be written for R�reg�±�h� and R�osc�±�h�.
Further we suppose that the function V�h ,	� vanishes at the
saddle points �qs , ps�, i.e., V�0,��=H1�qs , ps�=0. Then we
have F�0,��=0. In general cases, this condition can be sat-
isfied by subtracting from the Hamiltonian a term
H1�qs , ps , t� which does not affect the equations of motion.

Below we show that near the separatrix of the Hamil-
tonian system with hyperbolic fixed points the oscillatory
parts of the integrals �12� have a generic asymptotic behav-
ior. In the following sections we derive the asymptotical for-
mulas for R�osc��h� , R�osc�±�h� in the limit �h�→0.

2. Unperturbed orbits near the separatrix

Consider the unperturbed Hamiltonian H0�q , p� near the
saddle point �qs , ps� where �H0 /�q�qs , ps�=�H0 /�p�qs , ps�
=0. Expanding H0�q , p� in a series of powers of �q−qs� , �p
− ps� near the saddle point and by the linear coordinate trans-
formation

� = �q − qs�cos � + �p − ps�sin � ,

� = − �q − qs�sin � + �p − ps�cos � , �A5�

the Hamiltonian H0�q , p� can be diagonalized:

h��,�� 	 H0�q,p� − H0�qs,ps� = −
�2

2
�2 +

�2

2
�2 + O��3,�3� ,

�A6�

where �=���1�, �=��2, and �10 and �2�0,

��1,�2� =
Hqq + Hpp

2
±��Hqq − Hpp�2

4
+ Hqp

2 , �A7�

are the eigenvalues of the matrix

�Hqq Hqp

Hqp Hpp
� 	 ��

�2H0

�q2

�2H0

�q � p

�2H0

�p � q

�2H0

�p2
��

q=qs,p=ps.

The angle � is determined by tan �=2Hqp / �Hqq−Hpp�. The
equations of motion in coordinates �� ,�� are given by

d�

dt
=

�h��,��
��

= �2�,
d�

dt
= −

�h��,��
��

= �2� . �A8�

Phase space of this system near the saddle point is shown
in Fig. 6. Its solutions ���t ;h� ,��t ;h�� ,0 t ts, which cross
the section �s at the time moment t→ ts=� /��h� along
branches I and III of the separatrix are

��t;h� = 

�2�h�

�
� �cosh���ts − t�� , for h  0,

sinh���ts − t�� , for h � 0,
�

�A9�

��t;h� = ±
�2�h�

�
� �sinh���ts − t�� , for h  0,

cosh���ts − t�� , for h � 0,
�
�A10�

where �=��. The upper and lower signs in Eqs. �A9� and
�A10� correspond to the solution along branches I and III,
respectively. Similarly, solutions ���t ;h� ,��t ;h�� ,0� t�−ts,
which cross the section �s at the time moment t→−ts
=� /��h� along branches II and IV of the separatrix are
given by

��t;h� = ±
�2�h�

�
� �cosh���ts + t�� , for h  0,

sinh���ts + t�� , for h � 0,
�
�A11�

��t;h� = ±
�2�h�

�
� �sinh���ts + t�� , for h  0,

cosh���ts + t�� , for h � 0.
�
�A12�

3. Perturbation Hamiltonian in normal coordinates
� ,� near the saddle points

We expand the perturbation Hamiltonian V�h ,	�
=H1�q , p� near the saddle point, �qs , ps�, in series of powers
of �� ,��:

H1�z,pz� = a�� + a�� + b���
2 + b���� + b���2 + O��3� ,

�A13�

where

a� = aqcos � + apsin � ,

FIG. 6. Phase curves of Hamiltonian system near the saddle
point.
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a� = − aqsin � + apcos � ,

b�� = bqqcos2� +
1

2
bzpsin 2� + bppsin2� ,

b�� = − bqqsin 2� + bqpcos 2� + bppsin 2� ,

b�� = bqqsin2� −
1

2
bqpsin 2� + bppcos2� .

Here ���q−qs� , �p− ps�. The coefficients aq ,… ,bpp are given
by

aq =
�Hn�q,p�

�q �q=qs,p=ps
, ap = � �Hn�q,p�

�pq
�

q=qs,p=ps,

bqq =
1

2
� �2Hn�q,p�

�q2 �
q=qs,p=ps,

bqp =
�2Hn�q,p�

�q � p
,

bpp =
1

2
� �2Hn�q,p�

�p2 �
q=qs,p=ps

. �A14�

4. Integrals over the powers of orbits �„t , t… ,�„t ,h…
near the separatrix

The oscillatory parts of R�h� �Eq. �A1�� are given by the
integrals F�h , t� taken at the values t= ± ts , ts=� /��h�. Ac-
cording to Eq. �A13� we have expressed through the inte-
grals over the powers of orbits ��t , t� ,��t ,h�

X�k,j−k� = �±ts

�k�t;h�� j−k�t;h�exp�i�t�dt,�0 � k � j� .

�A15�

Below we estimate the these integrals up to the second order
�j�2�: Using the solutions for ��t ;h� ,��t ;h� near the saddle
point given by Eqs. �A9� and �A10� one obtains the follow-
ing expressions for X�1,0��h , ts� and X�0,1��h , ts� along
branches I and III, respectively:

X�1,0��h,ts� = 
 ei�ts
�2�h�

���2 + �2�
� �i� , h  0

� , h � 0,
�

X�0,1��h,ts� = ± ei�ts
�2�h�

���2 + �2�
� �� , h  0

i� , h � 0.
�
�A16�

Similarly, the corresponding functions along branches II and
IV are given by

X�1,0��h,− ts� = ± e−i�ts
�2�h�

���2 + �2�
� �i� , h  0

− � , h � 0,
�

X�0,1��h,− ts� = ± e−i�ts
�2�h�

���2 + �2�
� �− � , h  0

i� , h � 0,
�

�A17�

respectively.
The second-order integrals X�2,0��h , ± ts� , X�1,1��h , ± ts� ,

X�0,2��h , ± ts� along all four branches �I–IV� are given by

X�2,0��h, ± ts� = − iei�ts
2�h�
�2�

C1�h� ,

X�1,1��h, ± ts� = ei�ts
2�h�

4�2 + �2 ,

X�0,2��h, ± ts� = iei�ts
2�h�
�2�

C2�h� , �A18�

where

C1�h� = ��1 +
�2

4�2 + �2� , h  0

�− 1 +
�2

4�2 + �2� , h � 0,� �A19�

C2�h� = ��− 1 +
�2

4�2 + �2� , h  0

�1 +
�2

4�2 + �2� , h � 0.� �A20�

5. Oscillatory parts of R„h…

According to the relations �A3� these quantities are ex-
pressed through the functions F�h , ± ts� �Eq. �A4��, which
using the expansion �A13� can be reduced to

F�h,t� =� V�h,t�ei�tdt

= a�X
�1,0��h,t� + a�X�0,1��h,t� + b��X

�2,0��h,t�

+ b��X�1,1��h,t� + b��X�0,2��h,t� + O��3� . �A21�

First we consider separately the integrals along each
branch, I–IV, of the separatrix.

a. First (I) and third (III) branches

Using the relations for the integrals X�k,j−k� given by Eqs.
�A16�, we obtain the following expressions for R�osc�−�h� and
its real and imaginary parts, K�osc�−�h� and L�osc�−�h�:

R1
�osc�+�h� = F�h,ts� = ��h�ei��//��h� � �±�− i�A� + �A�, for h  0

− �A� + i�A�, for h � 0
� + ��h��C − iB�h��� , �A22�
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K1
�osc�+�h� = Re R�osc�−�h� = ± ��h� � ��A�sin���/��h�� + �A�cos���/��h�� , for h  0

− �A�cos���/��h�� − �A�sin���/��h�� , for h � 0
�

+ �h��C cos� ��

��h�
� + B�h�sin� ��

��h�
�� , �A23�

L1
�osc�+�h� = Im R�osc�−�h� = ± ��h� � �− �A�cos���/��h�� + �A�sin���/��h�� , for h  0,

− �A�sin���/��h�� + �A�cos���/��h�� , for h � 0
�

+ �h��C sin� ��

��h�
� + B�h�cos� ��

��h�
�� . �A24�

The coefficients A�, A�, B1, B2, and C are defined by

A� =
�2a�

���2 + �2�
, A� =

�2a�

���2 + �2�
, B�h� =

2

�2�− b��

C1�h�
�2 + b��

C2�h�
�2 � = �B1, for h  0,

B2, for h � 0,
�

B1 =
2

�2�b��

�2 −
b��

�2 +
�2

4�2 + �2�b��

�2 +
b��

�2 ��, B2 =
2

�2�−
b��

�2 +
b��

�2 +
�2

4�2 + �2�b��

�2 +
b��

�2 �� , �A25�

C =
2b��

4�2 + �2 .

b. Second (II) and fourth (IV) branches

Using Eqs. �A17� one obtains the following expressions for R�osc�+�h�, K�osc�+�h�, and L�osc�+�h�:

R1
�osc�−�h� = − F�h,− ts� = − ��h�e−i��//��h� � �±� i�A� − �A�, for h  0

− �A� + i�A�, for h � 0
� + ��h��C − iB�h��� . �A26�

The corresponding integrals are

K1
�osc�−�h� = Re R�osc�−�h� = 
 ��h� � ��A�sin���/��h�� − �A�cos���/��h�� , for h  0

− �A�cos���/��h�� + �A�sin���/��h�� , for h � 0
�

+ �h��− C cos� ��

��h�
� + B�h�sin� ��

��h�
�� , �A27�

L1
�osc�−�h� = Im R�osc�+�h� = 
 ��h� � ��A�cos���/��h�� + �A�sin���/��h�� , for h  0,

�A�sin���/��h�� + �A�cos���/��h�� , for h � 0,
�

+ �h��C sin� ��

��h�
� − B�h�cos� ��

��h�
�� . �A28�

The expressions for the integrals R�osc��h� depend on the saddle-saddle connection and can be obtained through the integrals
R�osc�±�h� given above. Below we consider the four types of homoclinic saddle-saddle connections when the system has a
single hyperbolic fixed point: �i� branch II is connected with branch I of the separatrix; �ii� branch IV is connected with branch
I; �iii� branch II is connected with branch III; �iv� branch IV is connected with branch III �see Fig. 6�.

Case (i). Adding the expressions for R�osc�+�h� and R�osc�−�h� taken with the upper signs we have

K�osc��h� = Re R�osc��h� = K�osc�+�h� + K�osc�−�h�

= 2 � ���h�A�� sin���/��h�� + �h�B1sin���/��h�� , for h  0,

− ��h�A�� cos�����h�� + �h�B2sin���/��h�� , for h � 0,
� �A29�

L�osc��h� = Im R�osc��h� = L�osc�+�h� + L�osc�−�h�

= 2 � ���h�A�� cos���/��h�� + C�h�sin���/��h�� , for h  0,

��h�A�� sin���/��h�� + C�h�sin���/��h�� , for h � 0,
� �A30�
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Case (ii). Adding R�osc�+�h� with the upper signs to R�osc�−�h� taken with the lower signs one obtains

K�osc��h� = 2 � ���h�A�� sin���/��h�� + �h�B1sin���/��h�� , for h  0,

− ��h�A�� cos�����h�� + �h�B2sin���/��h�� , for h � 0,
� �A31�

L�osc��h� = 2 � ���h�A�� sin���/��h�� + C�h�sin���/��h�� , for h  0,

��h�A�� cos���/��h�� + C�h�sin���/��h�� , for h � 0.
� �A32�

In case �iii� the formulas for K�osc��h� and L�osc��h� are given by Eqs. �A31� and �A32�, respectively, taken with the opposite
signs, and in case �iv� K�osc��h� and L�osc��h� are obtained from Eqs. �A29� and �A30� by changing the sign.
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